Continuous Functions:

DEFINITION:

- Continuity at interior points:

A function $y=f(x)$ is continuous at an interior point c of its domain if:

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

- Continuity at end-points:

A function $y=f(x)$ is continuous at a left end-point a of its domain if:

$$
\lim _{x \rightarrow a^{+}} f(x)=f(a)
$$

A function $y=f(x)$ is continuous at a right end-point b of its domain if:

$$
\lim _{x \rightarrow b^{-}} f(x)=f(b)
$$

Continuous Functions:

A function is continuous if it is continuous at each point of its domain.

Discontinuity at a point:

If a function $f(x)$ is not continuous at a point c, we say that $f(x)$ is discontinuous at c and call c a point of discontinuity of $f(x)$.
The Continuity Test
The function $y=f(x)$ is continuous at $x=c$ if and only if the following statements are true:-

1. $f(c)$ exists (c lies in the domain of f).
2. $\lim _{x \rightarrow c} f(x)$ exists (f has a limit as $x \rightarrow c$).
3. $\lim _{x \rightarrow c} f(x)=f(c) \quad$ (the limit equals the function value).

Example1: Discuss the continuity conditions of the function $f(x)$ which shown in figure at $x=0, x=1, x=2, x=3, x=1.5$ and $x=4$. -at $x=0$ (left end-point)

$$
f(0)=1
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} f(x)=1 \\
\therefore & \lim _{x \rightarrow 0^{+}} f(x)=f(0)=1
\end{aligned}
$$

So it is continuous at the left end-point ($x=0$).
-at $x=1$ (interior point)

$$
f(1)=1
$$

$\lim _{x \rightarrow 1^{-}} f(x)=0$
$\lim _{x \rightarrow 1^{+}} f(x)=1$
$\therefore \lim _{x \rightarrow 1} f(x)$ does not exist, because the right-hand and left-hand limits are not equal.

So it is discontinuous at $x=1$.
-at $x=2$ (interior point)

$$
f(2)=2
$$

$\lim _{x \rightarrow 2^{-}} f(x)=1$
$\lim _{x \rightarrow 2^{+}} f(x)=1$
$\therefore \lim _{x \rightarrow 2} f(x)=1$
$\therefore \lim _{x \rightarrow 2} f(x) \neq f(2)$
So it is discontinuous at $x=2$.
-at $x=3$ (interior point)

$$
\begin{aligned}
& f(3)=2 \\
& \lim _{x \rightarrow 3^{-}} f(x)=2 \\
& \lim _{x \rightarrow 3^{+}} f(x)=2 \\
\therefore & \lim _{x \rightarrow 3} f(x)=2 \\
\therefore & \lim _{x \rightarrow 3} f(x)=f(3)=2
\end{aligned}
$$

So it is continuous at $x=3$.
-at $x=1.5$ (interior point)

$$
\begin{aligned}
& f(1.5)=1 \\
& \lim _{x \rightarrow 1.5^{-}} f(x)=1 \\
& \lim _{x \rightarrow 1.5^{+}} f(x)=1 \\
\therefore & \lim _{x \rightarrow 1.5} f(x)=1 \\
\therefore & \lim _{x \rightarrow 1.5} f(x)=f(1.5)=1
\end{aligned}
$$

So it is continuous at $x=1.5$.

$$
\text { -at } x=4 \text { (right end-point) }
$$

$$
f(4)=0.5
$$

$$
\lim _{x \rightarrow 4^{-}} f(x)=1
$$

$$
\therefore \lim _{x \rightarrow 4^{-}} f(x) \neq f(4)
$$

So it is discontinuous at right-end point ($x=4$).
Example2: Determine weather the following functions are continuous at $x=2$?

1. $f(x)=\frac{x^{2}-4}{x-2}$

Sol.: $f(2)$ is not found $\left(2 \notin D_{f}\right)$
So the function is discontinuous at $x=2$.
2. $f(x)=\left\{\begin{array}{cc}\frac{x^{2}-4}{x-2} & x \neq 2 \\ 3 & x=2\end{array}\right.$

Sol.: $f(2)=3$

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{x-2}=\lim _{x \rightarrow 2} x+2=2+2=4
$$

$$
\therefore f(2) \neq \lim _{x \rightarrow 2} f(x)
$$

So the function is discontinuous at $x=2$.
3. $f(x)=\left\{\begin{array}{cc}\frac{x^{2}-4}{x-2} & x \neq 2 \\ 4 & x=2\end{array}\right.$

Sol.: $f(2)=4$

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=4
$$

$$
\therefore f(2)=\lim _{x \rightarrow 2} f(x)
$$

So the function is continuous at $x=2$.
Example1: Test the continuity of the following function at $x=1$:

$$
f(x)= \begin{cases}x^{2} & x<1 \\ \frac{x}{2} & x \geq 1\end{cases}
$$

Sol.: $\quad f(1)=\frac{1}{2}$

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} x^{2}=(1)^{2}=1 \quad, \quad \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{-}} \frac{x}{2}=\frac{1}{2}
$$

$\lim _{x \rightarrow 1} f(x)$ is not found (the left-hand and right-hand limits do not equal).
So the function is discontinuous at $x=1$.

Algebraic properties of continuous functions:

Theorem 1: If the functions f and g are continuous at c then:
a) $f+g, f-g$ and $f * g$ are continuous at $x=c$.
b) $\frac{f}{g}$ is continuous if $g(c) \neq 0$ and is discontinuous $x=c$ if $g(c)=0$.

Theorem 2: If f is continuous at c and g is continuous at $f(c)$ then the composite $g_{o} f$ is continuous at c.

Theorem 3: Polynomials are continuous at every point.

$$
\left[a_{o} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots\right]
$$

Examples of continuous functions:

1. The function $y=\frac{1}{x}$ is continuous at every value of x except $x=0$.
2. The greatest integer function $y=[x]$ is discontinuous at every integer.
3. The sine and cosine functions are continuous at every value of x.
4. Polynomials are continuous at every value of x.

For polynomials: $\lim _{x \rightarrow c} f(x)=f(c)$
5. Rational functions are continuous wherever they are defined.
6. The function $y=|x|$ is continuous at every value of x.

Homework:

1. Test the continuity of the following functions at given points?
(a) $f(x)=\left\{\begin{array}{cc}x^{2}-1 & -1 \leq x<0 \\ 2 x & 0 \leq x<1 \\ 1 & x=1 \\ -2 x+4 & 1<x<2 \\ 0 & 2 \leq x \leq 3\end{array}\right.$ at $x=-1, x=0, x=1, x=2$ and $x=3$.
(b) $f(x)=\frac{x^{2}-4}{(x+3)(x-2)}$ at $x=2$ and $x=-3$.
(c) $\left\{\frac{x^{3}-27}{x^{2}-9}\right.$

$$
\text { at } x=3 \text { and } x=-3
$$

(d) $f(x)=\frac{x^{2}+x-2}{(x-1)^{2}} \quad$ at $x=1$
2. Which the following statements are true or false of the function graphed here.
(a) $\lim _{x \rightarrow-1^{+}} f(x)=1$
(b) $\lim _{x \rightarrow 2} f(x)$ does not exist
(c) $\lim _{x \rightarrow 2} f(x)=2$
(d) $\lim _{x \rightarrow 1^{-}} f(x)=2$
(e) $\lim _{x \rightarrow-1^{+}} f(x)=1$
(f) $\lim _{x \rightarrow 1} f(x)$ does not exist
(g) $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)$
(h) $\lim _{x \rightarrow-1^{-}} f(x)=1$

(i) $\lim _{x \rightarrow 3^{+}} f(x)$ does not exist
(j) $\lim _{x \rightarrow c} f(x)$ exists at every c in $(-1,1)$
(k) $\lim _{x \rightarrow c} f(x)$ exists at every c in $(1,3)$
3. Find the limits of the following functions:
(a) $\lim _{x \rightarrow 0^{+}} \frac{|x|}{x}$
(b) $\lim _{x \rightarrow 0^{-}} \frac{|x|}{x}$
(c) $\lim _{x \rightarrow 0}[\cos x]$
(d) $\lim _{x \rightarrow 4^{+}}[[x]]$
(e) $\lim _{x \rightarrow 0^{+}} \frac{\sqrt{x}}{\sqrt{4+\sqrt{x}}-1}$
(f) $\lim _{n \rightarrow \infty} \frac{n^{2}-5 n+\sin n}{4 n^{2}+7 n+6}$
(g) $\lim _{n \rightarrow \infty} \sqrt{n^{2}+n}-\sqrt{n^{2}+10}$
(h) $\lim _{x \rightarrow \infty} \frac{x+\sin x}{x+\cos x}$
(i) $\lim _{x \rightarrow \infty} \frac{x+\sin x}{2 x+5}$
(j) $\lim _{x \rightarrow \infty} \frac{1+\sin x}{x}$
(k) $\lim _{x \rightarrow \infty} \frac{x+\sin x}{x}$
(l) $\lim _{n \rightarrow \infty} \frac{2 n^{2}-5 n-3}{n^{3}+2 n}$
(m) $\lim _{x \rightarrow 3^{+}} \frac{[x]}{x}$
(n) $\lim _{x \rightarrow 3^{-}} \frac{[x]}{x}$
(o) $\lim _{x \rightarrow 4^{+}} x-[x]$
4. Use the sandwich theorem to find the following limits:
(a) $\lim _{x \rightarrow \infty} \frac{\sin x}{\sqrt{x}}$
(b) $\lim _{x \rightarrow \infty} \frac{\cos x}{\sqrt{x}}$

