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Continuous Functions: 

DEFINITION: 

- Continuity at interior points: 

A function y=f(x) is continuous at an interior point c of its domain if: 

    

- Continuity at end-points: 

A function y= f (x) is continuous at a left end-point a of its domain if: 

     

A function y=f(x) is continuous at a right end-point b of its domain if: 

     

Continuous Functions:  

 A function is continuous if it is continuous at each point of its domain. 

Discontinuity at a point: 

 If a function f (x) is not continuous at a point c, we say that f (x) is 

discontinuous at c and call c a point of discontinuity of f (x). 

The Continuity Test 

 The function y=f(x) is continuous at x=c if and only if the following 

statements are true:- 

1. f (c) exists (c lies in the domain of f). 

2. exists (f has a limit as x→c). 

3.   (the limit equals the function value).  

Example1: Discuss the continuity conditions of the function f(x) which shown in 

figure at x=0, x=1, x=2, x=3, x=1.5 and x=4. 

-at x=0 (left end-point) 
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So it is continuous at the left end-point (x=0). 

-at x=1 (interior point)   

 f(1) = 1 

   

    

        does not exist, because the right-hand and left-hand limits are not 

equal. 

  So it is discontinuous at x=1. 

-at x=2 (interior point)    

  f(2) = 2       

   

  

           

          

  So it is discontinuous at x=2. 

-at x=3 (interior point)    

  f(3) = 2 
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  So it is continuous at x=3. 

-at x=1.5 (interior point)    

  f(1.5) = 1 

   

             

         

         

 So it is continuous at x=1.5. 

-at x=4 (right end-point)    

 f(4) = 0.5 

   

         

 So it is discontinuous at right-end point (x=4). 

Example2: Determine weather the following 

functions are continuous at x=2? 

1.  

Sol.: f(2) is not found ( ) 

 So the function is discontinuous at x=2. 

 

2.   

Sol.: f(2)=3  
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So the function is discontinuous at x=2. 

 

 

3.  

Sol.: f(2)=4  

  

     

So the function is continuous at x=2. 

Example1: Test the continuity of the following function at x=1: 

    

Sol.:   

        ,       

        is not found (the left-hand and right-hand limits do not equal). 

So the function is discontinuous at x=1. 

 

Algebraic properties of continuous functions: 

Theorem 1: If the functions f and g are continuous at c then: 

 a)   and  are continuous at x=c. 

 b)  is continuous if and is discontinuous x=c if . 
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Theorem 2: If f is continuous at c and g is continuous at f(c) then the composite go f 

is continuous at c. 

Theorem 3: Polynomials are continuous at every point. 

   

Examples of continuous functions: 

1. The function  is continuous at every value of x except x=0. 

2. The greatest integer function y=[x] is discontinuous at every integer. 

3. The sine and cosine functions are continuous at every value of x. 

4. Polynomials are continuous at every value of x. 

 For polynomials:  

5. Rational functions are continuous wherever they are defined. 

6. The function y=|x| is continuous at every value of x. 

Homework:  

1. Test the continuity of the following functions at given points? 

 

 

(a)  

 

 

 at x = -1, x = 0, x = 1, x = 2 and x = 3. 

  (b)  at x = 2 and x = -3. 

 

(c) 

 

 at x = 3 and x = -3 
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(d)  at x = 1 

2. Which the following statements are true or false of the function graphed here. 

 (a)    (b)  does not exist 

 (c)    (d)  

 (e)    (f)  does not exist 

 (g)   (h)  

 (i)   does not exist (j)  exists at every c in (-1,1) 

 (k)  exists at every c in (1,3) 

3. Find the limits of the following functions: 

 (a)     (b)    (c)    

 (d)    (e)   (f)  

 (g)  (h)   (i)  

 (j)    (k)   (l)  

 (m)    (n)    (o)  

4. Use the sandwich theorem to find the following limits: 

 (a)    (b)  
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